21/01/09
La combustione del carbone, come quella di ogni altro composto del carbonio, produce anidride carbonica (CO2) , oltre a quantità variabili di anidride solforosa, a seconda del luogo dal quale è stato estratto. L’anidride solforosa reagisce con l’acqua, formando acido solforoso. Se l’anidride solforosa viene rilasciata nell’atmosfera, reagisce con il vapore acqueo ed eventualmente torna sulla terra in forma di pioggia acida.
Le emissioni della combustione di carbone in centrali elettriche rappresenta la più grande fonte artificiale di anidride carbonica, che secondo la maggior parte degli studiosi del clima è causa primaria del riscaldamento globale. Oltre a questo, nelle emissioni degli impianti sono presenti molti altri inquinanti.
Alcuni studi dichiarano che le emissioni delle centrali elettriche a carbone siano responsabili della morte prematura di decine di migliaia di persone, solo negli Stati Uniti. Inoltre, queste emissioni sono le principali responsabili delle pioggie acide di alcune nazioni. le centrali elettriche moderne utilizzano varie tecniche per limitare la nocività dei loro scarichi e per aumentare l’efficienza della combustione, anche se queste tecniche non sono utilizzate in molti paesi, visto che gravano sul costo degli impianti. Per ridurre le emissioni sono state proposte tecniche di “sequestro” della CO2, ma non in larga scala.
Il carbone contiene anche tracce di altri elementi, compresi l’arsenico e il mercurio, che sono pericolosi se rilasciati nell’ambiente. Il carbone contiene anche tracce di uranio e altri isotopi radioattivi naturali, che rilasciati nell’ambiente possono comportare una contaminazione radioattiva.
Sebbene queste sostanze siano presenti solo in tracce, bruciando grandi volumi di carbone ne vengono rilasciate quantità significative. Una centrale a carbone, durante il suo funzionamento, emette nell’aria più radioattività di quella che emette una centrale nucleare di pari potenza.
Il carbone minerale, qualunque sia la sua qualità (litantrace, antracite, lignite, torba) e per quanto vagliato e polverizzato, essendo residuo fossilizzato di materiali lignei e vegetali, contiene sempre, oltre allo zolfo, anche se in differenti dosi, maggiori quantità rispetto ai derivati del petrolio di metalli pesanti (quali nichel, cadmio, piombo, mercurio, cromo e arsenico) e di alogeni, in particolare fluoro, cloro e loro composti. L’acido solforico e gli altri acidi forti, come quelli cloridrico (HCl), fluoridrico(HF) e nitrico (HNO3) non sono, peraltro, gli unici prodotti indesiderati della combustione che, se perfetta, dovrebbe generare solo acqua sotto forma di vapore e anidride carbonica (o biossido di carbonio – CO2). E’ infatti ben noto che un’ossidazione incompleta (e a maggior ragione lo sarebbe con un combustibile allo stato solido anziché liquido o gassoso) produce anche ossidi di azoto (NOx) e monossido di carbonio (CO). Quest’ultimo, in particolare, è unanimemente riconosciuto dalla comunità scientifica internazionale come un gas altamente tossico e nocivo se si considera che, respirato anche in piccole dosi, si sostituisce all’ossigeno nella sua insostituibile funzione vitale fissandosi rapidamente all’emoglobina del sangue, formando la carbossiemoglobina e causando situazioni di crisi nell’ossigenazione delle cellule.
Basta, infatti, una concentrazione nell’aria (formata per circa il 21% da O2, per il 70% da N e minori quantità di gas inerti) di CO pari solo allo 0,7%, per impegnare circa la metà dell’emoglobina del sangue. L’azione tossica si manifesta con cefalea e vomito e porta rapidamente a uno stato di coma fino al blocco della respirazione, con collasso vascolare. La presenza del cloro, inoltre, comporta la formazione e l’emissione nell’ambiente circostante di microinquinanti quali le policloro-dibenzodiossine e i policloro-dibenzofurani; le diossine, in particolare, risultano nocive per l’uomo anche in concentrazioni di qualche ng/Nm3. Annesse a queste ultime vi sono le nanopolveri o nanoparticelle (aggregati molecolari con un diametro compreso indicativamente fra 2 e 200 nm, si parla in particolare di PM0,2 considerando che la doppia elica del DNA ha un diametro di circa 2 nm), più sottili e più nocive della PM10 o particolato fine (già responsabile di malattie cardiogene quali infarto, scompenso cardiaco, cancro polmonare, ictus) che danno origine alle nanopatologie.
(segue)